王登刚 已出版文章查询
1 刘迎曦 已出版文章查询
2 李守巨 已出版文章查询

+ 作者地址

1Department of Building Engineering, Tongji University, Shanghai 200092, P R China

2State Key Laboratory of Structural Analysis of Industrial Equipment,Delian,University of Technology, Delian 116024, P R China)

  • 摘要
  • 参考文献
  • 相关文章
  • 统计
A numerical model of nonlinear two-dimensional steady inverse heat conduction problem was established considering the thermal conductivity changing with temperature.Combining the chaos optimization algorithm with the gradient regularization method, a chaos-regularization hybrid algorithm was proposed to solve the established numerical model.The hybrid algorithm can give attention to both the advantages of chaotic optimization algorithm and those of gradient regularization method. The chaos optimization algorithm was used to help the gradient regalarization method to escape from local optima in the hybrid algorithm. Under the assumption of temperature-dependent thermal conductivity changing with temperature in linear rule, the thermal conductivity and the linear rule were estimated by using the present method with the aid of boundary temperature measurements. Numerical simulation results show that good estimation on the thermal conductivity and the linear function can be obtained with arbitrary initial guess values, and that the present hybrid algorithm is much more efficient than conventional genetic algorithm and chaos optimization algorithm.

[1] Stolz G J .Numerical solution to an inverse problem of heat conduction for simple shapes[J].Journal of Heat Transfer,1960,82(01):20-26.

[2] YU Chang-ming .The inverse problem of heat conduction in calculation ofThe properties[J].工程热物理学报,1982,3(04):372-378.

[3] Kohn R;Vogelins M .Determining conductivity by boundary measurements[J].Communications on Pure and Applied Mathematics,1984,37(03):289-298.

[4] Tervola P .A method to determine the thermal conductivity from measured temperature profiles[J].International Journal of Heat and Mass Transfer,1989,32(08):1425-1430.

[5] Lin JY.;Cheng TF. .NUMERICAL ESTIMATION OF THERMAL CONDUCTIVITY FROM BOUNDARY TEMPERATURE MEASUREMENTS[J].Numerical Heat Transfer, Part A. Application: An International Journal of Computation and Methodology,1997(2):187-203.

[6] Garcia S.;Scott EP.;Guynn J. .Use of genetic algorithms in thermal property estimation: Part II - Simultaneous estimation of thermal properties[J].Numerical Heat Transfer, Part A. Application: An International Journal of Computation and Methodology,1998(2):149-168.

[7] BAI Bo-feng;GUO Lie-jin;CHEN Xue jun .A solution of multi-dimensional transient inverse heat conduction problem using the least square method[J].计算物理,1997(14):696-698.

[8] 王登刚,刘迎曦,李守巨,禹松坡.非线性二维稳态导热反问题的一种数值解法[J].西安交通大学学报,2000(11):49-52.

[9] HUANG Guang-yuang;LIU Xiao-jun.Inverse Problems in Mathematical Physics[M].济南:山东科学技术出版社,1993:57-61.

[10] Tikhonov A N;Arsenin V Y.Solutions of Ill-Posed Problems[M].Winston Press,1977

[11] 唐立民,张文飞,刘迎曦.微分方程反问题的梯度正则方法[J].计算结构力学及其应用,1991(02):123-129.

[12] LIU Ying-xi;WANG Deng-gang;ZHANG Jia-liang et al.Identifying material parameters with gradient regularization method[J].Journal of Computational Mechanics,2000,17(01):69-75.

[13] 王登刚,刘迎曦,李守巨.二维稳态导热反问题的正则化解法[J].吉林大学自然科学学报,2000(02):56-60.

[14] WANG Dong-sheng;CHAO Lei.Chaos Fractal and Their Applications[M].北京:北京科技大学出版社,1995:25-92.

[15] Li Bing;JIANGWei-sun .Chaos optimization method and its applications[J].Control Theory and Applications,1997,14(04):613-615.

[16] KONG Xiang-qian.The Finite Element in Heat Transfer[M].北京:科学出版社,1986:148-150.

[17] YANG Wen-Cai.Geophysical Inversion·Seismic Tomography[M].Geologic Press,1989:117-119.

语种: 英文   


  • + 更多
  • 字体大小