短纤维复合材料的本征应变边界积分方程计算模型

马杭 已出版文章查询
马杭
本平台内已出版文章查询
hangma@staff.shu.edu.cn
1 夏利伟 已出版文章查询
夏利伟
本平台内已出版文章查询
1 秦庆华 已出版文章查询
秦庆华
本平台内已出版文章查询
2

+ 作者地址

1上海大学,理学院,力学系,上海,200444

2澳大利亚国立大学,工程系,澳大利亚ACT,0200


0
  • 摘要
  • 参考文献
  • 相关文章
  • 统计
提出了短纤维复合材料的本征应变边界积分方程计算模型,并采用新发展的边界点法进行了求解.模型依据Eshelby等效夹杂物的概念并借助Eshelby张量,采用迭代方法来计算基体中各种性能短纤维的本征应变,其中所需的Eshelby张量不难通过解析或数值方法获得.由于未知量只出现在边界上,与已有的有限元和边界元模型相比,提出的计算模型可极大地减小异质体问题的求解规模,提高计算效率.通过数值算例计算了代表性体积单元上各种短纤维复合材料的整体弹性性能,验证了计算模型和求解方法的正确性和有效性.

[1] Eshelby J D .The determination of the elastic field of an ellipsoidal inclusion and related problems[J].Proceedings of the Royal Society of London Series A,1957,241(1226):376-396.

[2] Mura T;Shodja H M;Hirose Y .Inclusion problems (part 2)[J].Applied Mechanics Reviews,1996,49(10):S118-S127.

[3] Kiris A;Inan E .Eshelby tensors for a spherical inclusion in microelongated elastic fields[J].International Journal of Engineering Science,2005,43(1-2):49-58.

[4] Mercier S;Jacques N;Molinari A .Validation of an interaction law for the Eshelby inclusion problem in elasto-viscoplasticity[J].International Journal of Solids and Structures,2005(7):1923-1941.

[5] Salvatore Federico;Alfio Grillo;Walter Herzog .A transversely isotropic composite with a statistical distribution of spheroidal inclusions: a geometrical approach to overall properties[J].Journal of the Mechanics and Physics of Solids,2004(10):2309-2327.

[6] Shen LX.;Yi S. .An effective inclusion model for effective moduli of heterogeneous materials with ellipsoidal inhomogeneities[J].International Journal of Solids and Structures,2001(32/33):5789-5805.

[7] Kakavas PA;Kontoni DPN .Numerical investigation of the stress field of particulate reinforced polymeric composites subjected to tension[J].International Journal for Numerical Methods in Engineering,2006(7):1145-1164.

[8] Lee JK.;Mal A.;Choi SJ. .Stress analysis of an unbounded elastic solid with orthotropic inclusions and voids using a new integral equation technique[J].International Journal of Solids and Structures,2001(16):2789-2802.

[9] C.Y. Dong;Y.K. Cheung;S.H. Lo .A regularize domain integral formulation for inclusion problems of various shapes by equivalent inclusion method[J].Computer Methods in Applied Mechanics and Engineering,2002(31):3411-3421.

[10] Dong CY .Effective elastic properties of doubly periodic array of inclusions of various shapes by the boundary element method[J].International Journal of Solids and Structures,2006(25/26):7919-7938.

[11] Yuji Nakasone;Hirotada Nishiyama;Tetsuharu Nojiri .Numerical equivalent inclusion method: a new computational method for analyzing stress fields in and around inclusions of various shapes[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2000(1/2):229-238.

[12] Y. J. Liu;N. Nishimura;Y. Otani;T. Takahashi;X. L. Chen;H. Munakata .A Fast Boundary Element Method for the Analysis of Fiber-Reinforced Composites Based on a Rigid-Inclusion Model[J].Journal of Applied Mechanics,2005(1):115-128.

[13] Ma H.;Deng HL. .Nondestructive determination of welding residual stresses by boundary element method[J].Advances in engineering software,1998(2):89-95.

[14] Greengard L F;Rokhlin V .A fast algorithm for particle simulations[J].Journal of Computational Physics,1987,73(02):325-348.

[15] Kompis V;Kompis M;Kaukic M .Method of continuous dipoles for modeling of materials reinforced by short micro-fibers[J].Engineering Analysis With Boundary Elements,2007,31(05):416-424.

[16] MA Hang;QIN Qing-hua .Solving potential problems by a boundary-type meshless method-the boundary point method based on BIE[J].Engineering Analysis With Boundary Elements,2007,31(09):749-761.

[17] Brebbia C A;Telles J C F;Wrobel L C.Boundary Element Techniques-Theory and Applications in Engineering[M].Berlin:Springer-Verlag,1984

[18] Ma H.;Xu SQ.;Kamiya N. .Complete polynomial expansion of domain variables at boundary for two-dimensional elasto-plastic problems[J].Engineering analysis with boundary elements,1998(3):271-275.

[19] Ma H;Kamiya N .Boundary-type integral formulation of domain variables for three-dimensional initial strain problems[J].JSCE Journal of Applied Mechanics,1998,1(01):355-364.



期刊热词
  • + 更多
  • 字体大小